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Chemical clock reactions:
The effect of precursor consumption
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During a clock reaction an initial induction period is observed before a significant change
in concentration of one of the chemical species occurs. In this study we develop the results
of Billingham and Needham (1993) who studied a particular class of inhibited autocatalytic
clock reactions. We obtain modified expressions for the length of the induction period and
show that characteristic clock reaction behaviour is only observed within certain parameter
limits.

1. Introduction

A clock reaction is a chemical reaction which gives rise to a significant induction
period during which one of the chemical species, the clock chemical, has a very
low concentration. The end of the induction period is marked by a rapid increase in
concentration of the clock chemical. This rapid growth can produce remarkable effects
experimentally such as sudden dramatic colour changes in solution phase reactions.
One particular class of reaction even produces a flash of light [7]. Examples of clock
reactions include the arsenic(III) sulfide clock reaction [13], the formaldehyde clock
reaction [9], the iodine bisulphate clock [10] and the hydration of carbon dioxide [8].

In this paper we consider a combination of two different mechanisms which give
rise to clock reaction behaviour. The first is known as induction. In this case the
rate of production of the clock chemical is small when its concentration is small and
increases as the concentration increases, for example, cubic autocatalysis:

A+ 2B → 3B, rate kab2.

In this reaction species B catalyses its own production (see [2]). Reactions which are
thought to be well modelled by autocatalysis include the oscillatory B–Z reaction [6]
and the iodine-bisulphate clock reaction [5].

Another mechanism which can give rise to clock reaction behaviour is inhibi-
tion. In this case the clock chemical is supplied to the system via the decay of the
precursor chemical. An inhibitor chemical reacts with the clock chemical limiting its
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concentration and a significant increase in concentration of the clock chemical is only
possible once the inhibitor chemical has been consumed. For example (see [2]),

P → B, rate k0p,
B +C → D, rate k1bc.

Examples of reactions which are thought to be well modelled by this mechanism are
the photosynthesis of hydrogen chloride inhibited by ammonia and the polymerisation
of vinyl acetate by benzoquinone [4].

Merkin et al. [11] used part of the FKN mechanism, which involved an inhibition
and an autocatalytic step, to model the bromate-ferroin clock reaction. Using asymp-
totic methods they were able to make predictions about the length of the induction
period which agreed well with experimental results. Billingham and Needham [2]
used a combination of autocatalysis and inhibition to model the iodate-arsenous acid
reaction. They used phase plane techniques to classify the behaviour of the system for
different parameter regimes and constructed asymptotic solutions in certain parameter
limits. In a second paper [3] they considered the system

P → A, rate k0p, (1)

A+ nB → (n+ 1)B, rate k1ab
n, (2)

mB + C → D, rate k2b
mc, (3)

for the cases n,m = 1 and n,m = 2. They developed an asymptotic solution when
precursor decay was negligible during the induction period and were able to obtain
expressions for the length of the induction period in each of the different cases. In
this study we allow for the consumption of the precursor chemical and use the method
of matched asymptotic expansions to obtain solutions which describe the evolution of
the chemical concentrations. We are thus able to obtain modified expressions for the
length of the induction period. We examine the conjecture made by Billingham and
Needham [3] which states that if precursor consumption is significant then clock reac-
tion behaviour will only be observed within certain parameter limits. This conjecture
turns out to be correct for the cases n = m = 1 and n = m = 2 but not for the case
n = 2, m = 1. We note that in reaction scheme (1)–(3) the autocatalyst plays the part
of the clock chemical.

2. Mathematical formulation

The chemical concentrations p, a, b and c, satisfy the equations

dp
dt

=−k0p, (4)

da
dt

= k0p− k1ab
n, (5)

db
dt

= k1ab
n −mk2b

mc, (6)
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dc
dt

=−k2b
mc, (7)

and we impose the initial conditions

p = p0, a = 0, b = b0, c = c0, d = 0 at t = 0. (8)

We note that the concentration of the inert product, D, can be determined by con-
servation of matter as d = c0 − c. Equation (4) can be integrated immediately to
give

p = p0 e−k0t. (9)

By integrating the appropriate linear combinations of equations (5)–(7) we find

a+ b−mc = p0
(
1− e−k0t

)
+ b0 −mc0. (10)

We now eliminate c from equation (6) and the problem reduces to the system of two
first order ordinary differential equations

da
dt

= k0p0 e−k0t − k1ab
n, (11)

db
dt

= k1ab
n − k2b

m
[
a+ b− p0

(
1− e−k0t

)
− b0 +mc0

]
, (12)

subject to the initial conditions

a(0) = 0, b(0) = b0. (13)

It is now convenient to define dimensionless variables as

α = a/b0, β = b/b0, γ = c/b0, τ = k1b
n
0 t. (14)

In terms of the variables (14) equations (10)–(12) become

dα
dτ

= εP0 e−ετ − αβn, (15)

dβ
dτ

=αβn − βm

δ

[
α+ β − P0

(
1− e−ετ

)
+mλ− 1

]
, (16)

mγ=α+ β − P0
(
1− e−ετ

)
+mλ− 1, (17)

where the dimensionless parameters P0, λ, ε, and δ are defined by

P0 =
p0

b0
, λ =

c0

b0
, ε =

k0

k1bn0
, δ =

k1

k2b
m−n
0

, (18)

and initial conditions (8) now take the form

α(0) = 0, β(0) = 1, γ(0) = λ. (19)

The parameters P0 and λ are the dimensionless initial concentrations of P and C,
respectively. The parameter ε is a measure of the reaction rate of step (1) relative to
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the rate of the autocatalytic step (2) and the parameter δ is a measure of the rate of
the autocatalytic step (2) relative to the rate of the inhibition reaction (3).

Billingham and Needham [3] assumed that the reactant P is initially in large
excess over the autocatalyst B, and that reaction (1) proceeds much more slowly than
the autocatalytic step (2). This is the pool chemical approximation and mathematically
led them to consider the situation in which

ε� 1, P0 � 1 with µ = εP0 = O(1). (20)

Under this assumption the leading order problem is given as

dα
dτ

= µ− αβn, (21)

dβ
dτ

=αβn − 1
δ
βm[α+ β − µτ +mλ− 1], (22)

mγ=α+ β − µτ +mλ− 1. (23)

We note that Billingham and Needham [3] use the symbol K where K = δ−1.
For the majority of their analysis they assumed that K � 1, that is δ � 1. This
assumption is valid when the inhibition reaction proceeds much faster that the auto-
catalytic reaction. They also made the assumption that λ > 1/m. This requires the
initial concentration of the inhibitor chemical to be large enough to consume all the
autocatalyst present initially.

Using the small parameter δ, asymptotic solutions were constructed for the cases
n = 1, 2 and m = 1, 2. They found that a rapid growth in the autocatalyst concentration
followed a significant induction period, in which the concentration of the autocatalyst
was small, for all cases apart from n = 2, m = 1. Analytical expressions were given
for the length of the induction period which was found to be of O(δ−1) for the cases
n = m = 1 and n = m = 2. For the remaining case, n = 1, m = 2, it was found to
be of O(δ−1/3).

Further analysis showed that for the case n = 2, m = 1 clock reaction behaviour
could be observed for values of δ > δ∗. Numerical investigations suggested that for
typical parameters values δ∗ would be of O(1). This led Billingham and Needham [3]
to make the following conjecture: Clock reaction behaviour will only be observed for
ε < ε∗(δ) with

ε∗ = O(δ) as δ → 0 for n = m = 1 and n = m = 2, (24)

ε∗ = O
(
δ1/3) as δ → 0 for n = 1, m = 2. (25)

This conjecture implies that if sufficient precursor chemical is consumed in the early
stages of the reaction then clock reaction behaviour will not be observed.

We propose to study the effect of precursor consumption both on the length of
the induction period and the existence of clock reaction behaviour. We make the same
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assumptions as Billingham and Needham [3] restricting our analysis to the parameter
regime where δ � 1 and λ > 1/m. As suggested by the above conjecture we define

ε = ε0δ, ε0 = O(1) with µ = εP0 = O(1), (26)

for the cases n = m = 1 and n = m = 2, and we define

ε = ε0δ
1/3, ε0 = O(1) with µ = εP0 = O(1), (27)

for the case n = 1, m = 2. By doing this we are choosing a value of ε which will
ensure that the end of the induction period coincides with a significant consumption
of the precursor chemical. Equations (15)–(17) now become

dα
dτ

=µ e−ε0δ
στ − αβn, (28)

dβ
dτ

=αβn − βm

δ

[
α+ β − µ

ε0δσ
(
1− e−ε0δ

στ
)

+mλ− 1

]
, (29)

mγ =α+ β − µ

ε0δσ
(
1− e−ε0δ

στ
)

+mλ− 1, (30)

subject to the initial conditions

α(0) = 0, β(0) = 1, γ(0) = λ, (31)

where σ = 1 for the cases n = m = 1, 2, and σ = 1/3 for the case n = 1, m = 2.
If we take the limit ε0 → 0 then equations (28)–(30) reduce to the system (21)–(23)
studied by Billingham and Needham [3]. This proves to be a useful check for the
analysis carried out in the following sections.

We note that equations (28)–(30) admit asymptotic solutions of the form

α→ µ

ε0δσ
, β → 0, γ → λ− 1

m
as τ →∞, (32)

and

α→ 0, β → µ

ε0δσ
− (mλ− 1), γ → 0 as τ →∞. (33)

If the large time solution takes the form (32) then reaction step (3) inhibits the autocat-
alyst so strongly that reaction (2) never proceeds fast enough to produce a significant
concentration of B. Thus clock reaction behaviour does not occur. If the solution is
of the form (33) then step (2) proceeds quickly enough to produce sufficient autocat-
alyst to consume all the inhibitor. Once the precursor has been totally consumed the
concentration of B tends to a constant value. Solution (33) describes the behaviour in
this limit.

For the cases n = m = 1, 2, with ε = ε0δ, we show that our system is asymptotic
to either solution (32) or (33) depending on the parameters µ, ε0 and λ, verifying the
first part of the conjecture made by Billingham and Needham [3]. For the case n = 1,
m = 2, with ε = ε0δ

1/3, we show that our system is always asymptotic to solution (33).
This disproves the latter part of their conjecture.
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To obtain a condition for clock reaction behaviour in this latter case we consider
the situation in which

ε = ε0 = O(1) with µ = εP0 = O(1). (34)

By choosing ε = O(1) we ensure that the precursor has decayed to become negligibly
small before the end of the induction period. This time we find that the final form
of the solution is asymptotic to either (32) or (33), with σ = 0, depending on the
parameters µ, ε0 and λ.

In the following sections we present both numerical and asymptotic solutions to
the cases discussed above. We utilise the small parameter δ to complete our asymptotic
solutions and we assume that λ > 1/m.

3. Quadratic autocatalysis with linear inhibition (n = m = 1)

In this case the reaction scheme is

P → A, rate µ e−ε0δτ , (35)

A+B → 2B, rate αβ, (36)

B + C → D, rate βγ/δ, (37)

where δ = k1/k2 and ε0δ = k0/k1b0. We require a solution of

dα
dτ

=µ e−ε0δτ − αβ, (38)

dβ
dτ

=αβ − β

δ

[
α+ β − µ

ε0δ

(
1− e−ε0δτ

)
+ λ− 1

]
, (39)

γ =α+ β − µ

ε0δ

(
1− e−ε0δτ

)
+ λ− 1, (40)

subject to the initial conditions

α(0) = 0, β(0) = 1, γ(0) = λ. (41)

We use the technique of matched asymptotic expansions to solve equations (38)
and (39) subject to (41). Six asymptotic regions are required to describe the full
solution of the initial value problem. The analysis verifies conjecture (24) made by
Billingham and Needham [3] by showing that a rapid growth in the autocatalyst con-
centration is only possible within certain parameter limits. We now give a brief outline
of the main features of the asymptotic solution.

Region I

After noting that initially β = O(1) an examination of equations (38) and (39)
shows appropriate scaled variables to be

α̂ = δ−1α = O(1), β̂ = β = O(1), τ̂ = δ−1τ = O(1). (42)
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The governing equations (38) and (39) become

dα̂
dτ̂

=µ e−ε0δ
2 τ̂ − δα̂β̂, (43)

dβ̂
dτ̂

= δ2α̂β̂ − β̂
[
δα̂+ β̂ − µ

ε0δ

(
1− e−ε0δ

2 τ̂
)

+ λ− 1

]
, (44)

and solving these equations subject to the initial conditions gives the expansions

α̂∼µτ̂ + δ

[
k̂1 +

µτ̂ e−(λ−1)τ̂

λ

]
+ δ2

[
k̂2 +

k̂1 e−(λ−1)τ̂

λ
− µε0τ̂

2

2

]
+ o
(
δ2), (45)

β̂ ∼ (λ− 1) e−(λ−1)τ̂

λ
+ δ2

[
µ(λ− 1)τ̂ 2

2λ
− k̂1τ̂ (λ− 1)

λ
+
k̂3(λ− 1)

λ

]
e−(λ−1)τ̂

+ o
(
δ2), (46)

for τ � 1, where k̂1, k̂2 and k̂3 are constants of integration. These expansions become
non-uniform as τ̂ →∞, in particular, when τ̂ = O(δ−1).

Region II

In this region the autocatalyst has decayed to become exponentially small and
appropriate scalings are

α = α = O(1), φ = −δ log β = O(1), τ = τ = O(1). (47)

Solving the rescaled governing equations subject to the appropriate matching conditions
gives the expansions

α=µτ − δ
[
µε0τ

2

2

]
+ δ2

[
k̂1 +

µε2
0τ

3

6

]
+ O

(
δ3)+ αe, (48)

β =
λ− 1
λ

exp

{
−(λ− 1)τ

δ
+
µτ 2

2
− δ
(
k̂1τ −

µε2
0τ

3

6

)
+ o(δ)

}
, (49)

where αe denotes an exponentially small correction. Non-uniformities occur as
τ →∞, in particular, when τ = O(δ−1).

Region III

We now introduce a third asymptotic region in which appropriate scalings are

α̃ = δα = O(1), φ̃ = −δ2 logβ = O(1), τ̃ = δτ = O(1). (50)
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Equations (38) and (39) become

dα̃
dτ̃

=µ e−ε0τ̃ − α̃

δ
e−φ̃/δ

2
, (51)

dφ̃
dτ̃

=
α̃

δ
− µ

ε0δ

(
1− e−ε0τ̃

)
+ λ− 1− α̃+ e−φ̃/δ

2
, (52)

we obtain the leading order solution for α̃ as

α̃ =
µ

ε0

(
1− e−ε0τ̃

)
(53)

and an examination of equation (51) shows the remaining algebraic correction terms
to be constant. We find that the autocatalyst concentration is given by

β =
λ− 1
λ

exp

{
− 1
δ2

[(
λ− 1− µ

ε0

)
τ̃ +

µ

ε2
0

(
1− e−ε0τ̃

)]
− k̂1τ̃

}{
1 + O(δ)

}
. (54)

The behaviour of equation (54) changes dramatically as τ̃ → τ̃0 where, at leading
order, τ̃0 satisfies (

λ− 1− µ

ε0

)
τ̃0 =

µ

ε2
0

(
e−ε0τ̃0 − 1

)
. (55)

For there to be a rapid growth in autocatalyst concentration, and hence for clock
reaction behaviour to occur, there must exist a real solution of equation (55). It is
straightforward to show that for such a solution to exist the condition

0 < λ− 1 < µ/ε0, (56)

must be satisfied. If condition (56) is not fulfilled then the large time solution of
equations (38) and (39) will be of the form (32) and hence the autocatalyst con-
centration will decay to zero for large time. We have assumed for the purpose of
our analysis that λ > 1. The other condition requires there to be sufficient precur-
sor chemical initially to produce enough chemical A so that the rate of the autocat-
alytic reaction can increase to a point where it can overcome the inhibition reaction.
An estimate of τ 0 can be obtained using an iterative numerical scheme such as the
Newton–Raphson method and we give some typical results at the end of this section
in table 1.

To continue the asymptotic solution we must construct expansions for α̃ and φ̃
as τ̃ → τ̃0. We note that the exponentially small correction to α̃ satisfies

dα̃e
dτ̃

=−1
δ

µ

ε0

(
1− e−ε0τ̃

) (λ− 1)
λ

× exp

{
− 1
δ2

[(
λ− 1− µ

ε0

)
τ̃ +

µ

ε2
0

(
1− e−ε0τ̃

)]
− k̂1τ̃

}{
1 + O(δ)

}
(57)
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and appropriate expansions are

α̃∼ a− µ eε0τ̃0
(
τ̃0 − τ̃

)
+ δ

a(λ− 1)
λ(λ− 1− a)

exp

{
(λ− 1− a)

(τ̃0 − τ̃ )
δ2 + k̂1

(
τ̃0 − τ̃

)}{
1 + O(δ)

}
, (58)

φ̃∼−(λ− 1− a)
(
τ̃0 − τ̃

)
− δ2

[
k̂1
(
τ̃0 − τ̃

)
+ log

(
λ− 1
λ

)]
+ O

(
δ3). (59)

The constant a represents the leading order concentration α̃0 at τ̃0 and is given as

a =
µ

ε0

(
1− e−ε0τ̃0

)
. (60)

We note that it is necessary to include the exponentially small correction term in
expansion (58) as this gives the matching condition for the next region. Expansion (59)
becomes non-uniform as τ̃ → τ̃0, in particular, when τ̃ − τ̃0 = O(δ2).

Region IV

We introduce another asymptotic region centred on τ̃0/δ and of width O(δ2).
Appropriate scalings are

A = α− a

δ
= O(1), B = β = O(1), T =

τ

δ
− τ̃0

δ2 = O(1). (61)

The leading order equations are given as

dA
dT

= −aB,
dB
dT

= −B(λ− 1− a+A+B), (62)

and these are solved subject to the matching conditions

A∼ a(λ− 1)
λ(λ− 1− a)

exp
{
T
[
a− (λ− 1)

]}
, (63)

B∼ (λ− 1)
λ

exp
{
T
[
a− (λ− 1)

]}
(64)

as T → −∞. By dividing equation (62)2 by equation (62)1 and applying the above
matching conditions we obtain the relation

A+B = (λ− 1)
(
eA/a − 1

)
. (65)

It is thus possible to obtain implicit expressions for A and B which we find remain
bounded for finite T . Solving for the correction terms gives the expansions
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A∼
[
−(λ− 1)− k4 eaT

]
+ δ

[
k2

4

a
e2aT + k4(λ− 1)T eaT + µT e−ε0τ̃0

]
+ o(δ), (66)

B∼
[
k4 eaT

]
− δ
[
k2

4

a
e2aT + k4(λ− 1)T eaT

]
+ o(δ), (67)

for T � 1. Non-uniformities occur as T → −(1/a) log δ and in order to obtain
asymptotic expansions which remain uniform in the neighbourhood of this point we
introduce another asymptotic region.

Region V

Appropriate scalings for this region are

A = δα = O(1), B = δβ = O(1), T =
τ

δ
− τ̃0

δ2 +
log δ
a

= O(1), (68)

and rewriting the previous regions expansions in terms of this region’s variables leads
us to pose five term expansions. It is possible to solve exactly for all but the fi-
nal term in each expansion and we find that all terms remain bounded for finite T .
Approximating for T � 1 gives the asymptotic expansions

A∼
[
a3

k4
e−aT

]
+ δ log δ

[
(λ− 1)a
k4

e−aT
]

+ δ

[
(λ− 1)a2

k4
T e−aT

]
+ δ2(log δ)2

[
(λ− 1)2

k4
e−aT

]
+ δ2 log δ

[
aT (µ e−ε0τ̃0 − (λ− 1)2)

k4
e−aT

]
+ δ2

[
µ e−ε0τ̃0

a

]
+ o
(
δ2), (69)

B ∼
[
a− a3

k4
e−aT

]
− δ log δ

[
(λ− 1)a
k4

e−aT
]
− δ
[

(λ− 1)− (λ− 1)a2

k4
T e−aT

]
− δ2(log δ)2

[
(λ− 1)2

k4
e−aT

]
− δ2 log δ

[
µ e−ε0τ̃0

a
− aT (µ e−ε0τ̃0 − (λ− 1)2)

k4
e−aT

]
+ δ2

[
µT e−ε0τ̃0 − µ e−ε0τ̃0

a

]
+ o
(
δ2). (70)

Non-uniformities occur as T →∞ in particular when T = O(δ−2) and so we rescale
to form the final asymptotic region.

Region VI

The scalings for this final region are

ᾰ =
α

δ
= O(1), β̆ = δβ = O(1), τ̆ = δτ = O(1), (71)



S.J. Preece et al. / Chemical clock reactions 57

under which equations (38) and (39) become

δ2 dᾰ
dτ̆

= µ e−ε0τ̆ − ᾰβ̆, (72)

dβ̆
dτ̆

= ᾰβ̆ − β̆2

δ2

[
δᾰ+

β̆

δ
− µ

ε0δ

(
1− e−ε0τ̆

)
+ λ− 1

]
. (73)

By posing suitable expansions for ᾰ and β̆ we obtain, in terms of the unscaled variables,
final expansions of the form

α=
ε0δ e−ε0τ(

1− e−ε0δτ
)[1 + δ

ε0(λ− 1)
µ(1− e−ε0δτ )

]
+ o
(
δ2), (74)

β=
µ

ε0δ

(
1− e−ε0τ̆

)
− (λ− 1) + o(1). (75)

It is clear that as τ → ∞ then α → 0 and β → µ/ε0δ − (λ − 1), hence the solution
now takes on the asymptotic form (33). This completes the asymptotic solution of the
initial value problem for λ > 1 and δ � 1. Further details of the asymptotic solution
are given in [12].

We now summarise the structure of the asymptotic solution. Region I is an initial
transient region in which β decays to become exponentially small and γ is reduced to
approximately (λ−1). The concentration α continues to grow linearly through the first
and second regions and β remains exponentially small and γ close to (λ−1) in region II.
The rate of growth of α is slowed in region III and as τ → τ̃0/δ the concentration
β starts to increase very rapidly. To resolve this sharp increase we construct a thin
asymptotic region, region IV, which is centred on τ = τ̃0/δ. Expansions show that
a further logarithmic shift is required to form a further asymptotic region, region V.
The concentration α now decays to become exponentially small and we obtain the
scalings for the final asymptotic region. In region VI the solution has the large time
form (33).

The NAG D02BBF fourth order Runge–Kutta scheme was used to solve the
initial value problem (38)–(41). Figure 1 shows the results for parameter values λ = 2,
ε0 = 1, µ = 2 and δ = 0.1. The numerical solution verifies the asymptotic structure
described above. Figure 2 shows plots of the concentration β for varying values of δ.
This shows that clock reaction behaviour is displayed, even for moderately small values

Table 1
Comparison of numerical and asymptotic estimates of the
length of the induction period for the case n = m = 1 with

λ = 2, ε0 = 1 and µ = 2.

δ Asymptotic estimate of τ0 Numerical estimate of τ0

0.1 15.93 15.80
0.2 7.96 7.62
0.3 5.31 5.02
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Figure 1. Numerical solution of the initial value problem for the case n = m = 1 with λ = 2, ε0 =1,
µ = 2 and δ = 0.1.

Figure 2. Numerical solution of the initial value problem for the case n = m = 1 with λ = 2, ε0 = 1,
µ = 2 and δ = 0.1, 0.2, 0.3.

of δ and that it becomes more sharply defined as δ decreases. Table 1 compares the
asymptotic value of τ0, calculated by solving equation (55) using a Newton–Raphson
technique, with the approximate value found in the numerical solution. This was taken
to be the point at which the concentrations α and β became equal. Good agreement
is observed between the numerical and asymptotic results.
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4. Cubic autocatalysis with quadratic inhibition (n = m = 2)

In this case the reaction scheme is

P → A, rate µ e−ε0δτ , (76)

A+ 2B → 3B, rate αβ2, (77)

2B + C → D, rate β2γ/δ, (78)

where δ = k1/k2 and ε0δ = k0/k1b
2
0. We require a solution of

dα
dτ

= µ e−ε0δτ − αβ2, (79)

dβ
dτ

=αβ2 − β2

δ

[
α+ β − µ

ε0δ

(
1− e−ε0δτ

)
+ 2λ− 1

]
, (80)

γ=
1
2

[
α+ β − µ

ε0δ

(
1− e−ε0δτ

)
+ 2λ− 1

]
, (81)

subject to the initial conditions

α(0) = 0, β(0) = 1, γ(0) = λ. (82)

We construct an asymptotic solution in the same way as the previous section and find
that five asymptotic regions are required to describe the full solution of the initial value
problem. Our analysis again confirms conjecture (24) by showing that clock reaction
behaviour is only observed within certain parameter limits. We now summarise the
scalings and the leading order solutions in each of the regions.

Region I: τ̂ = δ−1τ = O(1), α̂ = δ−1α = O(1), β̂ = β = O(1).

α̂ = µτ̂ , log

(
β̂ + 2λ− 1

2λβ̂

)
− 2λ− 1

β̂
= −(2λ− 1)2τ̂ − (2λ− 1). (83)

We note that as τ̂ →∞ the latter expression becomes

β̂ ∼ 1
(2λ− 1)τ̂

. (84)

Region II: τ = δτ = O(1), α = δα = O(1), β = δ−2β = O(1).

α =
µ

ε0

(
1− e−ε0τ

)
, β =

1

[(2λ − 1)− µ/ε0]τ + µ/ε2
0[1− e−ε0τ ]

. (85)

The equation for β is singular provided there exists a τ 0 such that(
2λ− 1− µ

ε0

)
τ 0 =

µ

ε2
0

(
1− e−ε0τ 0

)
. (86)
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It is straightforward to show that a necessary condition is

0 < 2λ− 1 <
µ

ε0
. (87)

This inequality gives the parameter range in which clock reaction behaviour will be
observed. If condition (87) is not satisfied then the solution will take on the form (32)
and clock reaction behaviour will not be observed. This inequality has the same
physical implications as condition (56) in the previous section.

Region III:

T =
τ

δ
− τ 0

δ2 −
φ

δ2 = O(1), A = α− a

δ
= O(1), B = β = O(1).

We note that a/δ represents the concentration α when τ = τ 0 and φ is a small shift
from τ 0 which can be obtained implicitly in terms of δ, λ, a and τ 0. Both A and B
are found to develop singularities as T → T0 and appropriate coordinate expansions
are given as

A ∼ −1
a(T0 − T )

− (2λ− 1), B ∼ 1
a(T0 − T )

, as T → T0. (88)

To determine T0 it is necessary to match to region II at higher order.

Region IV:

T =
τ

δ2 −
τ 0

δ3 −
φ

δ3 −
T0

δ
= O(1), A = δα = O(1), B = δβ = O(1).

We find that A and B remain bounded for finite T and approximating for T � 1 gives

A ∼ a e−a
2(T−T 0), B ∼ a

(
1− e−a

2(T−T 0)), (89)

where the constant T 0 must be determined by matching at higher order to the previous
region. When we construct full expansions for A and B we find that non-uniformities
do not occur until T = O(δ−3).

Region V: τ̃ = δτ = O(1), α̃ = δ−2α = O(1), β̃ = δβ = O(1).

α̃ =
ε2

0 e−ε0τ̃

µ(1− e−ε0τ̃ )2 , β̃ =
µ

ε0

(
1− e−ε0τ̃

)
− δ(2λ − 1). (90)

As τ →∞ then α→ 0 and β → µ/ε0δ− (2λ−1) hence the solution now takes on the
asymptotic form (33). This completes the asymptotic solution of the initial value prob-
lem for λ > 1/2 and δ � 1. Further details of the asymptotic solution are given in [12].

The asymptotic solution has a very similar structure to that of the case n = m = 1.
The main differences being that the autocatalyst decays to become algebraically small
during the induction period and that the rapid growth in autocatalyst concentration
occurs at the end of the second asymptotic region.
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Figure 3. Numerical solution of the initial value problem for the case n = m = 2 with λ = 1, ε0 = 1,
µ = 3 and δ = 0.1,

Figure 4. Numerical solution of the initial value problem for the case n = m = 2 with λ = 1, ε0 = 1,
µ = 3 and δ = 0.05, 0.1, 0.2.

The NAG D02BBF fourth order Runge–Kutta scheme was used to solve the
initial value problem (79)–(82). Figure 3 shows the results for parameter values λ = 1,
ε0 = 1, µ = 3 and δ = 0.1. The dominant features of the numerical solution verify
the asymptotic analysis.

Figure 4 shows plots of the concentration of β for varying values of δ. As
predicted by the asymptotic theory the transition region becomes thinner as δ decreases
and hence clock reaction behaviour becomes more sharply defined.
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Table 2
Comparison of numerical and asymptotic estimates of the
length of the induction period for the case n = m = 2 with

λ = 1, ε0 = 1 and µ = 3.

δ Asymptotic estimate of τ0 Numerical estimate of τ0

0.05 17.48 17.03
0.1 8.74 8.49
0.2 4.37 4.61

Table 2 compares the asymptotic value of τ0, calculated by solving equation (86)
using a Newton–Raphson technique, with the approximate value found from the nu-
merical solution. This was taken to be the point at which the concentrations α and β
became equal.

5. Quadratic autocatalysis with quadratic inhibition (n = 1, m = 2,
ε = O(δ1/3))

In this case the reaction scheme is

P → A, rate µ e−ε0δ
1/3τ , (91)

A+B → 2B, rate αβ, (92)

2B +C → D, rate β2γ/δ, (93)

where δ = k1/k2b0 and k0/k2b0. We require a solution of

dα
dτ

= µ e−ε0δ
1/3τ − αβ, (94)

dβ
dτ

=αβ − 1
δ
β2
[
α+ β − µ

ε0δ1/3

(
1− e−ε0δ

1/3τ
)

+ 2λ− 1

]
, (95)

γ=
1
2

[
α+ β − µ

ε0δ1/3

(
1− e−ε0δ

1/3τ
)

+ 2λ− 1

]
, (96)

subject to the initial conditions

α(0) = 0, β(0) = 1, γ(0) = λ. (97)

Seven regions are required to describe the solution of the full initial value problem.
The analysis disproves the conjecture made by Billingham and Needham by showing
that clock reaction behaviour is observed for all parameter values. We now give details
of the scalings and the leading order solutions in each of the regions.

Region I: α̂ = δ−1α = O(1), β̂ = β = O(1), τ̂ = δ−1τ = O(1).

α̂ = µτ̂ , β̂ ∼ 1
(2λ− 1)τ̂

, τ̂ � 1. (98)
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Region II: α = α = O(1), β = δ−1β = O(1), τ = τ = O(1).

α = µτ , β =
µτ

2λ− 1
. (99)

Region III: α̃ = δ1/3α = O(1), β̃ = δ−2/3β = O(1), τ̃ = δ1/3τ = O(1).
The leading order solutions are given as

α̃=
µ

ε0

(
1− e−ε0τ̃

)
, (100)

β̃=

µ
ε0

(1− e−ε0τ̃ ){
(2λ− 1)2 − 2µ2

ε2
0

[
τ̃ − 2

ε0
(1− e−ε0τ̃ )− 1

2ε0
(1− e−2ε0τ̃ )

]}1/2
. (101)

For a singularity to occur in equation (101) and hence for clock reaction behaviour to
occur there must exist a τ̃0 such that

(2λ− 1)2 =
2µ2

ε2
0

[
τ̃0 −

2
ε0

(
1− e−ε0τ̃0

)
− 1

2ε0

(
1− e−2ε0τ̃0

)]
. (102)

It is straightforward to show that this equation has a real solution for all non-negative
parameter values. Thus the final solution for the case n = 1, m = 2 with ε = O(δ1/3)
always takes the asymptotic form (33) and clock reaction behaviour is always observed.

Region IV: A = α− a/δ1/3 = O(1), B = δ−1/2β = O(1), T = τ − τ̃0/δ
1/3 = O(1).

We note that a denotes the scaled concentration α̃ at τ̃ = τ̃0.

A = µ e−ε0τ̃0T − (2λ− 1), B =
1√

2(T0 − T )1/2
, (103)

where the constant T0 can be fixed by matching to region III.

Region V:

A = α− a

δ1/3
= O(1), B = δ−1/3β = O(1), T =

τ

δ1/3
− τ̃0

δ2/3
− T0

δ1/3
= O(1).

We obtain the expansions

A∼µT0 e−ε0τ̃0 − (2λ− 1) + δ1/3[µT e−ε0τ̃0 − k̃4 eaT
]

+ o
(
δ1/3), (104)

B∼ k̃4 eaT + O
(
δ1/3), (105)

where k̃4 is a constant which can be determined by matching to region IV. We base the
scalings for the next region on the non-uniformity which occurs as T → −(2/3a) log δ.

Region VI:

Â = δ1/3α = O(1), B̂ = δ1/3β = O(1),

T̂ =
τ

δ1/3
− τ̃0

δ2/3
− T0

δ1/3
+

2
3a

log δ = O(1).
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Â =
a2

a+ k̃4 eaT̂
, B̂ =

k̃4a

a e−aT̂ + k̃4

. (106)

If we develop appropriate expansions we find that non-uniformities occur as T̂ →∞,
in particular, when T̂ = O(δ−1/3). This gives us the scalings for the final asymptotic
region.

Region VII: ᾰ = δ−1/3α = O(1), β̆ = δ1/3β = O(1), τ̆ = δ1/3τ = O(1).
In terms of the unscaled variables the final expansions are

α=
ε0δ

1/3 e−ε0δ
1/3τ

1− e−ε0δ1/3τ

[
1 + δ1/3 ε0(2λ− 1)

µ(1− e−ε0δ1/3τ )

]
+ o
(
δ2/3), (107)

β=
µ

ε0δ1/3

(
1− e−ε0δ

1/3τ
)
− (2λ− 1) + o(1). (108)

As τ → ∞ then α → 0 and β → µ/ε0δ
1/3 − (2λ − 1) hence the solution now takes

on the asymptotic form (33). This completes the asymptotic solution for λ > 1/2 and
δ � 1. Further details of the asymptotic solution are given in [12].

We now summarise the structure of the asymptotic solution. In region I β decays
to become small and γ decays to become approximately (λ − 1/2). Region II is a
transient region in which both α and β grow linearly. In the next region the rate of
growth of α decreases and as τ → τ̃0/δ

1/3 there is a rapid growth in the autocatalyst
concentration. We resolve this sharp increase by scaling into a thin region, region IV,
centred on τ = τ̃0/δ

1/3. In regions IV and V the concentration of the autocatalyst
continues to increase while the concentration α remains constant at leading order. It

Figure 5. Numerical solution of the initial value problem for the case n = 1, m = 2 with ε0 = 1, µ = 3,
λ = 1 and δ = 10−3.
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Figure 6. Numerical solution of the initial value problem for the case n = 1, m = 2 with ε0 = 1, µ = 3,
λ = 1 and δ = 10−3, 10−4, 10−5.

Table 3
Comparison of numerical and asymptotic estimates of the length of the in-
duction period for the case n = 1, m = 2 with ε0 = 1, µ = 3 and λ = 1.

δ Asymptotic estimate of τ0 Numerical estimate of τ0

10−3 6.4 7.3
10−4 13.7 14.3
10−5 29.7 30.1

is not until region VI that the concentration of the autocatalyst stops growing and the
concentration α becomes small. In the final region the solution takes on the form (33)
and the autocatalyst concentration is observed to tend to a constant.

Again the NAG D02BBF fourth order Runge–Kutta scheme was used to solve
the initial value problem (94)–(97). Figure 5 shows the results for parameter values
ε0 = 1, µ = 3, λ = 1. The numerical solution verifies the asymptotic structure
described above and displays similar characteristics to the cases n = m = 1 and
n = m = 2. We note that the width of the transition region is O(δ1/3) which is larger
than in the previous cases. This is illustrated more clearly by figure 6 which shows
the concentration β for different values of δ.

Table 3 gives a comparison between the asymptotic time of blow up and the
numerical time of blow up. The latter was taken to be the point at which the con-
centrations α and β became equal and the asymptotic estimate calculated using a
Newton–Raphson method to solve equation (102). As δ decreases the asymptotic
results agree more closely with the numerical estimate which we would expect.
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6. Quadratic autocatalysis with quadratic inhibition (n = 1, m = 2, ε = O(1))

The analysis in section 5 showed that clock reaction behaviour always occurred
when ε = O(δ1/3). We now consider the case when ε = O(1) which ensures that the
precursor chemical has fully decayed before the end of the induction period. We show
that clock reaction behaviour is only exhibited within certain parameter limits. The
reaction scheme is

P → A, rate µ e−ε0τ , (109)

A+B → 2B, rate αβ, (110)

2B + C → D, rate β2γ/δ, (111)

where δ = k1/k2b0 and ε0 = k0/k1b0. We require a solution of

dα
dτ

=µ e−ε0τ − αβ, (112)

dβ
dτ

=αβ − 1
δ
β2
[
α+ β − µ

ε0

(
1− e−ε0τ

)
+ 2λ− 1

]
, (113)

γ =
1
2

[
α+ β − µ

ε0

(
1− e−ε0τ

)
+ 2λ− 1

]
, (114)

subject to the initial conditions

α(0) = 0, β(0) = 1, γ(0) = λ. (115)

To describe the full solution of (112) and (113) subject to initial conditions (115)
requires five asymptotic regions. We now give a brief outline of the main features of
the asymptotic solution.

Region I
As in the previous sections the initial scalings are

α̂ = δ−1α = O(1), β̂ = β = O(1), τ̂ = δ−1τ = O(1). (116)

Solving subject to the initial conditions gives the expansions

α̂∼µτ̂ − δ
[

µτ̂

2λ− 1
− µε0τ̂

2

2

]
+ δ2

[
µε2

0τ̂
3

6
+

µτ̂

(2λ− 1)2

]
+ o
(
δ2), (117)

β̂ ∼
[

1
(2λ− 1)τ̂

− log τ̂
(2λ− 1)3τ̂ 2 −

η

(2λ− 1)3τ̂ 2

]
+ δ2

[
µτ̂

3(2λ− 1)

]
+ o
(
δ2), (118)

for τ̂ � 1. Both expansions become non-uniform as τ̂ → ∞, in particular, when
τ̂ = O(δ−1).
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Region II
Appropriate scalings are

α = α = O(1), β = δ−1β = O(1), τ = τ = O(1), (119)

and we find that at leading order α is given as

α =
µ

ε0

(
1− e−ε0τ

)
, (120)

and that the leading order expression for β satisfies

dβ
dτ

=
µ

ε0

(
1− e−ε0τ

)
β − β 2

(2λ− 1). (121)

As τ →∞ then α and β become

α ∼ µ

ε0
+ e.s.t., β ∼ µ

ε0(2λ− 1)
+ e.s.t. (122)

where e.s.t. stands for exponentially small terms. We note that we can now assume
that the precursor chemical has fully decayed to all algebraic orders. If we develop
expansions valid for τ � 1 then we find that non-uniformities occur as τ → ∞, in
particular, when τ = O(δ−1).

Region III
Appropriate scalings are

α̃ = α = O(1), β̃ = δ−1β = O(1), τ̃ = δτ = O(1). (123)

By solving the leading order equations subject to the appropriate matching conditions
we can show α̃ and β̃ to satisfy

log

(
β̃

β̃ − 1

)
− 1

β̃
=
(
τ̃0 − τ̃

)
, log

(
α̃

a

)
+
a

α̃
− 1 =

(
τ̃0 − τ̃

)
, (124)

where a = µ/ε0 − (2λ− 1) and τ̃0 is given by

τ̃0 = − log

[
1− ε0(2λ− 1)

µ

]
− ε0(2λ− 1)

µ
. (125)

Equation (125) gives the length of the induction period, that is the point when there
is a rapid growth in the concentration of β̃. For τ̃0 to be real we require

µ

ε0
> 2λ− 1. (126)

This condition states that there must be enough precursor chemical initially to pro-
duce sufficient chemical A to consume all the inhibitor chemical via the autocatalytic
reaction.
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Expanding for (τ̃0 − τ̃ )� 1 and β̃ � 1 gives the coordinate expansions

α̃ ∼ a+
√

2
(
τ̃0 − τ̃

)
+ O

(
τ̃0 − τ̃

)
, β̃ ∼ 1√

2(τ̃0 − τ̃ )
, (127)

and if further terms are developed in the asymptotic expansion then non-uniformities
are seen to occur as τ̃ → τ̃0, in particular, when τ̃0 − τ̃ = O(δ).

Region IV
Appropriate scalings are

A =
(α− a)
δ1/2

= O(1), B = δ−1/2β = O(1), T = τ − τ̃0

δ
= O(1), (128)

and we obtain the leading order rescaled equations

dA
dT

= −aB,
dB
dT

= aB −B2(A+B). (129)

If we divide equation (129)2 by (129)1 then we obtain a Bernoulli type equation which
can be solved subject to the appropriate conditions to give

A+B =
a exp (−A2/2a)∫∞

A exp (−u2/2a) du
. (130)

Examination of this integral shows that A → −∞ and B → ∞ as T → ∞. In
this limit equations (129)1 and (129)2 simplify to linear ordinary differential equations
which have the exponential solutions

A ∼ −k3 eaT , B ∼ k3 eaT , (131)

as T →∞, where k3 is a nonzero constant which can be determined by matching to
region III. Consideration of the scalings (128) shows that a non-uniformity occurs as
T → (1/a) log(1/δ1/2).

Region V
The scalings for this final region are

A = α = O(1), B = β = O(1), T = τ − τ̃0

δ
− 1
a

log

(
1

δ1/2

)
= O(1), (132)

and, in terms of the unscaled variables, the final expressions for A and B are

α =
a2

a+ k3 eaT
, β =

ak3 eaT

a+ k3 eaT
. (133)

As τ →∞ then α→ 0 and β → a, thus the solution takes on asymptotic form (33).
We note that a non-uniformity will occur when T = O(δ−1) but if we construct a
further region based on appropriate rescalings then it is found to be passive as it
reproduces the large time behaviour of this region. This completes the asymptotic
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Figure 7. Numerical solution of the initial value problem for the case n = 1, m = 2, ε0 = O(1) with
ε0 = 1, µ = 3, λ = 1 and δ = 0.005.

solution for λ > 1/2 and δ � 1. Further details of the asymptotic solution are given
in [12].

We now summarise the structure of the asymptotic solution. In the initial re-
gion β decays rapidly to become small and the inhibitor chemical decreases to be-
come approximately (λ− 1/2). In region II both the concentrations α and β become
constant at leading order and γ starts to decrease. The concentration of chemical
A begins to fall in region III as the precursor chemical has been consumed. We
also observe a decrease in γ as the reaction scheme is consuming chemical A at the
expense of the inhibitor. At some well defined time τ = τ̃0/δ the inhibitor chem-
ical is completely consumed and this produces a rapid increase in the autocatalyst
concentration and a corresponding decrease in α. This signifies the end of the in-
duction period and we find we must scale into a thin region centred on τ = τ̃0/δ.
In this region both α and β are still large of O(δ−1/2) and when appropriate ex-
pansions are developed we find that a logarithmic shift in the temporal variable is
required. We now obtain the scalings for the final region, in which both α and
β are of O(1). The solutions in this region show that α decays to become small
and the autocatalyst concentration increases until it attains its large time value of
a = µ/ε0 − (2λ− 1).

The NAG D02BBF fourth order Runge–Kutta scheme was used to solve the initial
value problem (112)–(115). Figure 7 shows the numerical solution for the parameter
values ε0 = 1, µ = 3, λ = 1 and δ = 0.005. Although the autocatalyst concentration
seems to display similar trends to the other cases there is a marked difference in the
behaviour of α and γ which we have described above. The condition for clock reac-
tion behaviour to be displayed is well illustrated by figure 7. In physical terms enough
chemical A must be fed into the system by the precursor to consume all the inhibitor
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Figure 8. Numerical solution of the initial value problem for the case n = 1, m = 2, ε = O(1) with
ε0 = 1, µ = 3, λ = 1 and δ = 0.01, 0.005, 0.001.

Table 4
Comparison of numerical and asymptotic estimates of the length of the
induction period for the case n = 1, m = 2, ε = O(1) with ε0 = 1,

µ = 3 and λ = 1.

δ Asymptotic estimate of τ0 Numerical estimate of τ0

0.01 8.4 12.0
0.005 15.7 19.7
0.001 74.0 78.5

via the autocatalytic reaction. Thus clock reaction behaviour will not occur if α → 0
before γ → 0.

Figure 8 shows the concentration of the autocatalyst for different values of δ. As
predicted by the asymptotic solution the width of the transition region decreases as δ
becomes smaller and hence clock reaction behaviour becomes more sharply defined.

Table 4 compares the asymptotic and the numerical length of the induction period.
The asymptotic value was calculated using the expression

τ0 =
τ̃0

δ
+

1
a

log

(
1

δ1/2

)
, (134)

where τ̃0 is given by equation (125). The numerical estimate was taken to be when the
concentrations α and β became equal. As expected the asymptotic prediction becomes
closer to the numerical estimate as δ becomes smaller.
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Table 5
Properties of the initial values problem for δ � 1.

n = m = 1 n = m = 2 n = 1, m = 2 n = 1, m = 2

ε ε0δ ε0δ ε0δ
1/3 ε0

δ k1/k2 k1/k2 k1/k2b0 k1/k2b0

τ0 O(δ−1) O(δ−1) O(δ−1/3) O(δ−1)
Condition µ

ε0
> λ− 1 µ

ε0
> 2λ− 1 no condition µ

ε0
> 2λ − 1

7. Comparison of the reaction schemes

Initially we consider the cases of quadratic autocatalysis with linear inhibition
(n = m = 1) and cubic autocatalysis with quadratic inhibition (n = m = 2). These
two schemes display quite similar characteristics and the main points are summarised
in table 5. We found that, for δ � 1 (k1 � k2) and λ > 1/m (c0 > b0/m), clock
reaction behaviour is only exhibited within certain parameter limits. In terms of the
dimensional parameters this condition is given as

p0 >
k2

k1
(mc0 − b0). (135)

We note that this verifies part of the conjecture made by Billingham and Needham [3].
Condition (135) states that the initial precursor concentration must be sufficiently large
to produce enough chemical A to enable the rate of the autocatalytic reaction to increase
to a point where it can overcome the inhibition reaction. We note that in both cases
the rapid growth of the autocatalyst occurs when τ = O(δ−1), the main difference
between the two schemes being during the induction period when the concentration
of the autocatalyst becomes exponentially small in the case n = m = 1, but only
algebraically small in the case n = m = 2.

In the case of quadratic autocatalysis with quadratic inhibition (n = 1, m = 2)
with ε = ε0δ

1/3, our analysis showed that, for δ � 1 (k1 � k2b0) and λ > 1/2
(c0 > b0/2), clock reaction behaviour is always exhibited. This disproves the latter part
of the conjecture made by Billingham and Needham [3]. We note that the mechanism
for rapid growth of the autocatalyst is the same as in the previous two cases but this
time it occurs when τ = O(δ−1/3).

For the case of quadratic autocatalysis with quadratic inhibition (n = 1, m = 2)
with ε = O(1). For δ � 1 (k1 � k2b0) and λ > 1/2 (c0 > b0/2), clock reaction
behaviour is only exhibited within certain parameter limits. In terms of the dimensional
parameters this condition is given as

p0 > 2c0 − b0. (136)

Condition (136) is not physically equivalent to condition (135) as it contains no stipula-
tion on the reaction rate constants. It states that the initial precursor concentration must
be sufficiently large to produce enough chemical A to consume all the inhibitor via
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the autocatalytic reaction. Once this has happened a rapid growth in the autocatalyst
is observed.

Finally we note that, for the case of cubic autocatalysis with linear inhibition with
δ � 1 and λ < 1, Billingham and Needham [3] showed that clock reaction behaviour
cannot be exhibited. This is because the rate of the autocatalytic reaction can never
become large enough to overcome the inhibition reaction.

8. Conclusion

In this study we have looked at four model reaction schemes based on reaction
steps (1)–(3). We have extended the work of Billingham and Needham [3] by allowing
for the decay of the precursor chemical and showed that all reaction schemes can
display characteristic clock reaction behaviour. By using asymptotic methods we have
been able to construct a full solution of the initial value problem in each of the
different cases. This has enabled us investigate the conjecture made by Billingham
and Needham [3] which states that when precursor chemical consumption is significant
then clock reaction behaviour will only be observed within certain parameter limits.
We find that this conjecture is correct for the cases n = m = 1 and n = m = 2 but
not for the case n = 1, m = 2. We have determined appropriate parameter limits and
also obtained expressions for the length of the induction period which, when compared
with the numerical results, give good agreement.

We note finally that the schemes considered are examples of inhibited autocat-
alytic reactions and can be used to model nucleation crystal growth. An example of
such a model has been proposed by Billingham and Coveney [1]. They used reac-
tions (1)–(3) to represent the rate determining steps of cement hydration in the presence
of a retarder. Their model describes the transition of the surface coating of the cement
grain from an impermeable gel to a permeable crystal. At the end of the induction
period there is a very rapid growth of the crystalline phase which allows for renewed
reaction and thus thickening of the cement. Their model is in qualitative agreement
with experimental observations.
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